A Framework of Modified Adaptive Fuzzy Inference Engine (MAFIE) and Its Application

نویسندگان

  • J. Hossen
  • S. Sayeed
  • I. Yusof
چکیده

This paper introduces a complete framework of Modified Adaptive Fuzzy Inference Engine (MAFIE) and its application. The fuzzy with hybridization schemes has become of research interest in versatile applications over the past decade. The fuzzy hybridizations models are quite popular among practitioners or researchers in various advanced promising fields to help solve problems with a small number of inputs. However, there are limitations faced by all popular fuzzy systems when they are applied to systems with a large number of inputs. A modified apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input-output dataset. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and fuzzy rules by the hybrid fuzzy clustering (Fuzzy C-Means and Subtractive Clustering) and apriori algorithms techniques, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-square estimator and a conjugate gradient descent algorithm towards better performance with a minimal set of fuzzy rules. The proposed MAFIE is able to reduce the number of fuzzy rules which increases exponentially when large input dimensions are involved. The performance of the proposed MAFIE is compared with other existing models when applied to pattern classification schemes using Fisher’s Iris and Wisconsin Breast Cancer benchmark datasets. The results are shown to be very competitive and MAFIE is ready for high dimension practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification

The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is const...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES

The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics...

متن کامل

Adaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data

The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013